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Transition Models for Categorical Longitudinal Data

Unlike marginal models, which model within-subject correlations based on a correlation
pattern matrix, and mixed effects models, which model within-subject correlations based on
random effects, transition models explicitly model the development of longitudinal outcomes
based on previously observed outcomes. They are most natural to think about when we
have categorical, longitudinal data, where there are several states that an individual may
find themselves in. In the following diagram, we can imagine tracking the longitudinal
development of some illness, where individuals are healthy, sick, or have died from the
illness. They are free to move between healthy and sick, but once they have died, their
process stops entirely.

Healthy Sick

Dead

If we consider consecutive timepoints, j and j+1, and we want to know P (Yi,j+1 = Dead)
for this process, it evidently helps to know the value at Yij. In the extreme case we have
P (Yi,j+1 = Dead|Yi,j = Dead) = 1, but presumably we also know that P (Yi,j+1 = Dead|Yi,j =
Sick) > P (Yi,j+1 = Dead|Yi,j = Healthy). Generalizing this process naturally lends itself to
the idea of modelling the state of Yi at time j, based on the previously observed trajectory of
Yi. It becomes natural to think of the longitudinal process as an emerging stochastic process.

To formalize notation, consider a state space for Y , denoted S. In our previous example,
this would make S = {Healthy, Sick,Dead}. Then, assume that we have discretized our time
measurement so that there are fixed time points, t1 < t2 < · · · < tK , with corresponding
measurements of our outcomes Yi1, Yi2, . . . , YiK . At time j, we define a history vector for
individual i to be Hij = (Yi1, Yi2, . . . , Yi,j−1). That is, Hij contains all of the information
available prior to time point j. We are interested in estimating the parameters given by

P (Yij = ℓ|Hij).

The Markov Assumption

One simplifying assumption that we often will make when dealing with stochastic processes
in general (and transition models in particular) is that the Markov property is satisfied. In
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general, a stochastic process is said to be an rth order Markov chain if

P (Yij = ℓ|Hij) = P (Yij = ℓ|Yi,j−1, Yi,j−2, . . . , Yi,j−r).

That is, under this Markovian assumption, the probabilities at time point j only rely on the
most recent previous r states. This is often a reasonable assumption, and frequently we will
take r = 1 or r = 2. In the event of a first order Markov chain we can take

P (Yij = m|Hij) = P (Yi,j = m|Yi,j−1).

At each time point, t, there are then a set of transition probabilities that define the model.
We denote this as

pℓ,m(t) = P (Yt = m|Yt−1 = ℓ).

That is, pℓ,m(t) represents the probability of the process being observed in state m at time
t when we know at the previous time, t − 1, the process was in state ℓ. In addition to
the transition probabilities, we also need to know initial distributions of states. That is,
P (Yi1 = ℓ), since there is no previous information to condition on. We will denote these
starting probabilities as πℓ = P (Yi1 = ℓ).

Maximum Likelihood in the First-Order Markov Model

In order to estimate the probability parameters specified by the model, we can apply maxi-
mum likelihood estimation. The central idea is that we can divide one individuals trajectory
up into single step transitions. For instance, if K = 3, at t = 1 the individual is observed in
state ℓ, at t = 2 the individual is observed in state m, and at t = 3 the individual is back in
state ℓ, then the probability of this pathway can be written out as

Li = P (Yi1 = ℓ, Yi2 = m,Yi3 = ℓ)

= P (Yi3 = ℓ|Yi1 = ℓ, Yi2 = m)P (Yi1 = ℓ, Yi2 = m)

= P (Yi3 = ℓ|Yi1 = ℓ, Yi2 = m)P (Yi2 = m|Yi1 = ℓ)P (Yi1 = ℓ)

= P (Yi3 = ℓ|Yi2 = m)P (Yi2 = m|Yi1 = ℓ)P (Yi1 = ℓ)

= pm,ℓ(3) · pℓ,m(2) · πℓ

= πYi1
· pYi1,Yi2

(2) · pYi2,Yi3
(3).

More generally, we can write this as

Li = πYi1

K∏
j=2

pY i,j−1,Yi,j
(j).

Combining this with other individuals gives us the full likelihood as

L(p) =
n∏

i=1

Li =
n∏

i=1

{
πYi1

K∏
j=2

pY i,j−1,Yi,j
(j)

}
.
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Now, when maximizing this likelihood, note that we have restrictions on pℓ,m(j). In partic-
ular, if we denote our sample space S = {1, 2, . . . , S}, then we can constrain

pm,S(j) = 1−
S−1∑
ℓ=1

pm,ℓ(j).

That is, if we are currently in state ℓ, with probability 1 we will be in one of the S states next
time step, and so the sum

∑S
m=1 pℓ,m(j) = 1. As a result, we actually wish to consider the

constrained optimization problem here, which we can get by adding on (to our log-likelihood)
a term which forces the summation to be 1.

In the following derivation, we take nℓ,m(j) to be the number of individuals in our sample
who were at ℓ at t = j − 1 and at m at t = j. That is,

nℓ,m(j) =
n∑

i=1

I(Yi,j−1 = ℓ)I(Yi,j = m).

For notational convenience, we take nℓ,·(j) to be the total number of people who are in state
ℓ at time j − 1, without concern for where they end up at time j. That is,

nℓ,·(j) =
S∑

m=1

nℓ,m(j) =
n∑

i=1

I(Yi,j−1 = ℓ).

Taking this notation, and adding on the constraint to the above likelihood (after having taken
the log) we can optimize this with respect to our transition probabilities, by differentiating
with respect to the parameters, and solving for p̂ such that the score is 0.

ℓ(p) =
n∑

i=1

{
log πYi1

+
K∑
j=1

log
(
pYi,j−1,Yi,j

(j)
)}

+
K∑
j=1

S∑
s=1

λsj

(
1−

S∑
ℓ=1

ps,ℓ(j)

)
∂

∂pℓ,m(j)
ℓ(p) =

n∑
i=1

I(Yi,j−1 = ℓ)I(Yi,j = m)
1

pℓ,m(j)
− λℓ,j =

nℓ,m(j)

pℓ,m(j)
− λℓj.

=⇒ p̂ℓ,m(j) =
nℓ,m(j)

λℓ,j

1 =
S∑

m=1

p̂ℓ,m(j) =
S∑

m=1

nℓ,m(j)

λℓ,j

=⇒ λℓ,j =
S∑

m=1

nℓ,m(j) = nℓ,·(j)

=⇒ p̂ℓ,m(j) =
nℓ,m(j)

nℓ,·(j)
.

This gives us a (fairly intuitive) estimator for the transition probabilities, based on the
maximum likelihood. The transition probability from ℓ to m at t = j is given by

p̂ℓ,m(j) =
nℓ,m(j)

nℓ,·(j)
=

{# from ℓ to m at j}
{# in ℓ at j − 1}

.
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Time Homogeneity Assumption

One way that we can further simplify this setting is by making the assumption of time ho-
mogeneity. This corresponds to the assumption that the transition probabilities are constant
across all time points. Using our notation, under the first-order Markov model, if we have
that

pℓ,m(j) = pℓ,m(j
′) ∀{ℓ,m} ∈ S and ∀j ̸= j′ ∈ {1, . . . , K},

then the Markov chain is time homogeneous. Under this assumption all we care about is the
probability of transitioning from ℓ → m, regardless of what time that transition is happening
at. We can work out the same likelihood derivation under this simplified assumption. Using
the same notation as before, we get

ℓ(p) =
n∑

i=1

{
log πYi1

+
K∑
j=1

log
(
pYi,j−1,Yi,j

)}
+

S∑
s=1

λs

(
1−

S∑
ℓ=1

ps,ℓ

)
∂

∂pℓ,m
ℓ(p) =

n∑
i=1

K∑
j=2

I(Yi,j−1 = ℓ)I(Yi,j = m)
1

pℓ,m
− λℓ =

∑K
j=2 nℓ,m(j)

pℓ,m
− λℓ.

=⇒ p̂ℓ,m =

∑K
j=1 nℓ,m(j)

λℓ

1 =
S∑

m=1

p̂ℓ,m =
S∑

m=1

∑K
j=2 nℓ,m(j)

λℓ

=⇒ λℓ =
S∑

m=1

K∑
j=2

nℓ,m(j) =
K∑
j=2

nℓ,·(j)

=⇒ p̂ℓ,m =

∑K
j=2 nℓ,m(j)∑K
j=2 nℓ,·(j)

.

This gives rise to a similar interpretation as in the previous setting where here we can say
that the transition probability from ℓ to m at any time is given by

p̂ℓ,m =

∑K
j=2 nℓ,m(j)∑K
j=2 nℓ,·(j)

=
{# from ℓ to m by K}
{# in ℓ before K}

.

Inclusion of Covariates with Logistic Regression

One major shortcoming of this method is that we are unable to accommodate the effects of
covariates on the transition probabilities. This is a problem primarily since the questions of
interest tend to rely on testing the significance of covariates on the outcomes. However, if we
consider the simplified setting of S = {0, 1}, so that the categorical data are binary, there are
only two (unique) parameters to estimate at each stage j. That is, p00(j) + p01(j) = 1 and
p10(j) + p11(j) = 1, so by estimating p01(j) and p11(j), we have all the required parameters
for this model. Consider expressing

logit {P (Yij = 1|Yi,j−1)} = α0j + α1jYi,j−1.
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From this relationship, we would find that

logit(p01(j)) = logit(P (Yij = 1|Yi,j−1 = 0)) = α0j

logit(p11(j)) = logit(P (Yij = 1|Yi,j−1 = 1)) = α0j + α1j

=⇒ p01(j) = expit(α0j)

=⇒ p11(j) = expit(α0j + α1j).

As a result, this model represents a simple re-parameterization of the model expressed above.
In the event that we are using the time homogeneous assumption, we would simply drop the
j subscript from these models.

The form logit(P (Yij = 1|Yi,j−1)) = α0j+α1jYi,j−1 expresses a standard logistic regression
model, where we are regressing the outcome Yij on the explanatory factor, Yi,j−1. As a result,
we could fit the parameter estimates here using all of our standard GLM theory! All we would
need to do is transform our data frame to include a column with the lagged outcome (Yi,j−1

at time j) and then use that as the predictor in the model. From here, we can use all of the
standard logistic regression diagnostic, hypothesis testing, and so forth as we are used to.

ID Y1 Y2 · · · YK−1 YK

1 Y1,1 Y1,2 · · · Y1,K−1 Y1,K

...
...

... · · ·
...

...
n Yn,1 Yn,2 · · · Yn,K−1 Yn,K

Table 1

ID j Yj Yj−1

1 2 Y1,2 Y1,1

1 3 Y1,3 Y1,2

...
...

...
...

1 K Y1,K Y1,K−1

...
...

...
...

n 2 Yn,2 Yn,1

n 3 Yn,3 Yn,2

...
...

...
...

n K Yn,K Yn,K−1

Table 2

ID Yj Yj−1

1 Y1,2 Y1,1

1 Y1,3 Y1,2

...
...

...
1 Y1,K Y1,K−1

...
...

...
n Yn,2 Yn,1

n Yn,3 Yn,2

...
...

...
n Yn,K Yn,K−1

Table 3

Using the above examples, we have that Table 1 representing the standard wide-format
data, with K observations for each of n subjects. Table 2 transforms this data to be suitable
for an analysis where we do not make the time-homogeneous assumption. Here, we would
regress Yj on both Yj−1 and j, where j is treated as a factor. This would estimate separate
parameters for (α0, α1) across all j = 1, . . . , K. Table 3 displays the long-format for a
time-homogeneous process, where we would estimate α0 and α1 by regressing Yj on Yj−1.

There are two reasons that we want to frame this analysis as a logistic regression. First,
we can very easily move from a first-order Markov assumption, to an r-th order Markov
assumption, by simply adding additional lag terms. For instance,

P (Yi,j = 1|Yi,j−1, Yi,j−2) = expit (α0 + α1Yi,j−1 + α2Yi,j−2 + α3Yi,j−1Yi,j−2) ,

will cover all possible combinations. In particular we will get that

p(0,0),1 = expit(α0) p(0,1),1 = expit(α0 + α1)

p(1,0),1 = expit(α0 + α2) p(1,1),1 = expit(α0 + α1 + α2 + α3).
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The second benefit to this framing is that it provides an obvious way of allowing the
transition probabilities to depend on additional variates, beyond simply the lagged terms.
To see this, consider the time-homogeneous model, with the first-order Markov assumption.
If we want the transition probabilities to depend on Xi as well, we can take

logit {P (Yij = 1|Xij, Yi,j−1)} = X ′
ijβ + Yi,j−1

(
X ′

ijα
)
.

Then, by the same arguments presented above we are estimating separate transition proba-
bilities based on whether the previous state was 0 (given by β) or 1 (given by α+β). We can
of course extend this, making higher order Markov assumptions, by simply replacing the α·
terms above with X ′

ijβ·. These models can also be fit through standard, logistic regression
(alongside all the benefits of asymptotic inference which come along with that)!

Some Notes and Further Considerations

• If we do not care about the impact of covariates and just wish to compute transition
probabilities directly, these can be computed based on a summary table of the counts
of one-step transitions.

• In the logistic regression model, β is interpreted as the change in the (logit) of p01 that
is associated with a 1 unit increase in the relevant covariate, where α is interpreted as
the difference in the effects of the covariates on transition probabilities (p11 − p01).

• By using formal hypothesis tests, we can see whether simpler models fit the data equally
well (e.g., testing whether the the rth order is necessary).

• In the logistic model, we have only specified the likelihood for the conditional compo-
nent, and have ignored the baseline, f(yi1), or, (in the case of an r-th order assumption),

f(yi1, yi2, . . . , yir).

We then proceeded by ignoring this marginal, baseline term and working with the
conditional likelihood,

LC
i =

K∏
j=r+1

f(yij|yi,j−1, . . . , yi,j−r).

This conditional likelihood works out to be the standard GLM, and we used standard
software. Alternatively, we could have also explicitly modelled the baseline distribution
(e.g., assign the equilibrium distribution to it) which will increase efficiency assuming
that the model is correct.

• In theory, similar extensions would work when the data are not binary (e.g. with
multinomial GLMs)
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